The Vector Projection

Suppose we have two vectors X\overrightarrow{X} and Y\overrightarrow{Y} which point in different directions. In some scenarios, we might want to try and rewrite X\overrightarrow{X} as a combination of two component vectors X\overrightarrow{X}^\parallel and X\overrightarrow{X}^\perp, with one of these parallel to Y\overrightarrow{Y} and the other perpendicular.

A vector projection in two dimensions

We call the parallel component X\overrightarrow{X}^\parallel the vector projection or the vector resolution of X\overrightarrow{X} onto Y\overrightarrow{Y}. We can use the dot product to compute the vector projection through the formula

X=ProjYX=(XYYY)Y \overrightarrow{X}^\parallel = \operatorname{Proj}_{\overrightarrow{Y}}\overrightarrow{X} = \left(\frac{\overrightarrow{X} \cdot \overrightarrow{Y}}{\overrightarrow{Y} \cdot \overrightarrow{Y}}\right) \overrightarrow{Y}

We can then use this formula to find the perpendicular component using

X=XX \overrightarrow{X}^\perp = \overrightarrow{X} - \overrightarrow{X}^\parallel

We can also define the scalar projection or scalar resolution of X\overrightarrow{X} onto Y\overrightarrow{Y}, which is the length of the vector X\overrightarrow{X}^\parallel. The formula for the scalar projection is also related to the dot product

X=XYY=XYYY |\overrightarrow{X}^\parallel| = \frac{\overrightarrow{X} \cdot \overrightarrow{Y}}{|\overrightarrow{Y}|} = \frac{\overrightarrow{X} \cdot \overrightarrow{Y}}{\sqrt{\overrightarrow{Y} \cdot \overrightarrow{Y}}}

...

Log in or sign up to see more