Rearranging integrals to enable u u u -Substitution
Using integration by subsitution for functions of the form f ( x ) = g ( u ( x ) ) f(x) = g(u(x)) f ( x ) = g ( u ( x ))
In some cases, we can even apply integration by substitution when the u ′ ( x ) u'(x) u ′ ( x ) term is missing. This trick can work if we can write u ′ ( x ) u'(x) u ′ ( x ) as a function of u ( x ) u(x) u ( x ) so that u ′ ( x ) = h ( u ( x ) ) u'(x) = h(u(x)) u ′ ( x ) = h ( u ( x )) . If this is indeed the case, we can use the following algebra to make f ( x ) f(x) f ( x ) fit a form which allows us to integrate by subsitution
f ( x ) = g ( u ( x ) ) f ( x ) = g ( u ( x ) ) ⋅ u ′ ( x ) u ′ ( x ) f ( x ) = g ( u ( x ) ) ⋅ u ′ ( x ) h ( u ( x ) ) f ( x ) = g ( u ( x ) ) h ( u ( x ) ) ⋅ u ′ ( x ) f ( x ) = g ⋆ ( u ( x ) ) ⋅ u ′ ( x ) where g ⋆ ( u ) = g ( u ) h ( u ) \begin{aligned}
f(x) &= g(u(x)) \\
f(x) &= g(u(x)) \cdot \frac{u'(x)}{u'(x)} \\
f(x) &= g(u(x)) \cdot \frac{u'(x)}{h(u(x))} \\
f(x) &= \frac{g(u(x))}{h(u(x))} \cdot u'(x) \\
f(x) &= g^\star(u(x)) \cdot u'(x) \quad \text{where } g^\star(u)=\frac{g(u)}{h(u)} \\
\end{aligned} f ( x ) f ( x ) f ( x ) f ( x ) f ( x ) = g ( u ( x )) = g ( u ( x )) ⋅ u ′ ( x ) u ′ ( x ) = g ( u ( x )) ⋅ h ( u ( x )) u ′ ( x ) = h ( u ( x )) g ( u ( x )) ⋅ u ′ ( x ) = g ⋆ ( u ( x )) ⋅ u ′ ( x ) where g ⋆ ( u ) = h ( u ) g ( u )
As an example, we will solve the integral ∫ 1 e x + 1 d x \int \frac{1}{e^x + 1} dx ∫ e x + 1 1 d x
We could try using u ( x ) = e x u(x) = e^x u ( x ) = e x to solve this integral. In this case, u ′ ( x ) = e x = u ( x ) u'(x) = e^x = u(x) u ′ ( x ) = e x = u ( x ) , so we could try writing
∫ 1 e x + 1 d x = ∫ 1 e x + 1 ⋅ e x e x d x ∫ 1 e x + 1 d x = ∫ 1 ( e x + 1 ) e x ⋅ e x d x ∫ 1 e x + 1 d x = ∫ 1 ( u ( x ) + 1 ) u ( x ) ⋅ u ′ ( x ) d x ∫ 1 e x + 1 d x = ∫ 1 ( u + 1 ) u d u where u = e x \begin{aligned}
\int \frac{1}{e^x + 1} dx &= \int \frac{1}{e^x + 1} \cdot \frac{e^x}{e^x} dx \\
\int \frac{1}{e^x + 1} dx &= \int \frac{1}{(e^x + 1)e^x} \cdot e^x dx \\
\int \frac{1}{e^x + 1} dx &= \int \frac{1}{(u(x) + 1)u(x)} \cdot u'(x) dx \\
\int \frac{1}{e^x + 1} dx &= \int \frac{1}{(u + 1)u} du \quad \text{where } u = e^x \\
\end{aligned} ∫ e x + 1 1 d x ∫ e x + 1 1 d x ∫ e x + 1 1 d x ∫ e x + 1 1 d x = ∫ e x + 1 1 ⋅ e x e x d x = ∫ ( e x + 1 ) e x 1 ⋅ e x d x = ∫ ( u ( x ) + 1 ) u ( x ) 1 ⋅ u ′ ( x ) d x = ∫ ( u + 1 ) u 1 d u where u = e x
We can then solve this integral to obtain
∫ 1 e x + 1 d x = ln ∣ u ∣ − ln ∣ u + 1 ∣ + C ∫ 1 e x + 1 d x = ln ∣ e x ∣ − ln ∣ e x + 1 ∣ + C ∫ 1 e x + 1 d x = x − ln ( e x + 1 ) + C \begin{aligned}
\int \frac{1}{e^x + 1} dx &= \ln{|u|} - \ln{|u+1|} + C \\
\int \frac{1}{e^x + 1} dx &= \ln{|e^x|} - \ln{|e^x+1|} + C \\
\int \frac{1}{e^x + 1} dx &= x - \ln{(e^x+1)} + C \\
\end{aligned} ∫ e x + 1 1 d x ∫ e x + 1 1 d x ∫ e x + 1 1 d x = ln ∣ u ∣ − ln ∣ u + 1∣ + C = ln ∣ e x ∣ − ln ∣ e x + 1∣ + C = x − ln ( e x + 1 ) + C
Common functions which can be useful for this integration trick are
u ( x ) = e k x u ′ ( x ) = k ⋅ u ( x ) u ( x ) = tan ( x ) u ′ ( x ) = u ( x ) 2 + 1 u ( x ) = x u ′ ( x ) = 2 u ( x ) u ( x ) = 1 x u ′ ( x ) = − u ( x ) 2 \begin{aligned}
u(x) &= e^{kx} &\quad u'(x) &= k \cdot u(x) \\
u(x) &= \tan(x) &\quad u'(x) &= u(x)^2 + 1 \\
u(x) &= \sqrt{x} &\quad u'(x) &= \frac2{u(x)} \\
u(x) &= \frac1{x} &\quad u'(x) &= -u(x)^2 \\
\end{aligned} u ( x ) u ( x ) u ( x ) u ( x ) = e k x = tan ( x ) = x = x 1 u ′ ( x ) u ′ ( x ) u ′ ( x ) u ′ ( x ) = k ⋅ u ( x ) = u ( x ) 2 + 1 = u ( x ) 2 = − u ( x ) 2
...
Log in or sign up to see more