Rearranging integrals to enable uu-Substitution

Using integration by subsitution for functions of the form f(x)=g(u(x))f(x) = g(u(x))

In some cases, we can even apply integration by substitution when the u(x)u'(x) term is missing. This trick can work if we can write u(x)u'(x) as a function of u(x)u(x) so that u(x)=h(u(x))u'(x) = h(u(x)). If this is indeed the case, we can use the following algebra to make f(x)f(x) fit a form which allows us to integrate by subsitution

f(x)=g(u(x))f(x)=g(u(x))u(x)u(x)f(x)=g(u(x))u(x)h(u(x))f(x)=g(u(x))h(u(x))u(x)f(x)=g(u(x))u(x)where g(u)=g(u)h(u)\begin{aligned} f(x) &= g(u(x)) \\ f(x) &= g(u(x)) \cdot \frac{u'(x)}{u'(x)} \\ f(x) &= g(u(x)) \cdot \frac{u'(x)}{h(u(x))} \\ f(x) &= \frac{g(u(x))}{h(u(x))} \cdot u'(x) \\ f(x) &= g^\star(u(x)) \cdot u'(x) \quad \text{where } g^\star(u)=\frac{g(u)}{h(u)} \\ \end{aligned}

As an example, we will solve the integral 1ex+1dx\int \frac{1}{e^x + 1} dx

We could try using u(x)=exu(x) = e^x to solve this integral. In this case, u(x)=ex=u(x)u'(x) = e^x = u(x), so we could try writing

1ex+1dx=1ex+1exexdx1ex+1dx=1(ex+1)exexdx1ex+1dx=1(u(x)+1)u(x)u(x)dx1ex+1dx=1(u+1)uduwhere u=ex\begin{aligned} \int \frac{1}{e^x + 1} dx &= \int \frac{1}{e^x + 1} \cdot \frac{e^x}{e^x} dx \\ \int \frac{1}{e^x + 1} dx &= \int \frac{1}{(e^x + 1)e^x} \cdot e^x dx \\ \int \frac{1}{e^x + 1} dx &= \int \frac{1}{(u(x) + 1)u(x)} \cdot u'(x) dx \\ \int \frac{1}{e^x + 1} dx &= \int \frac{1}{(u + 1)u} du \quad \text{where } u = e^x \\ \end{aligned}

We can then solve this integral to obtain

1ex+1dx=lnulnu+1+C1ex+1dx=lnexlnex+1+C1ex+1dx=xln(ex+1)+C\begin{aligned} \int \frac{1}{e^x + 1} dx &= \ln{|u|} - \ln{|u+1|} + C \\ \int \frac{1}{e^x + 1} dx &= \ln{|e^x|} - \ln{|e^x+1|} + C \\ \int \frac{1}{e^x + 1} dx &= x - \ln{(e^x+1)} + C \\ \end{aligned}

Common functions which can be useful for this integration trick are

u(x)=ekxu(x)=ku(x)u(x)=tan(x)u(x)=u(x)2+1u(x)=xu(x)=2u(x)u(x)=1xu(x)=u(x)2\begin{aligned} u(x) &= e^{kx} &\quad u'(x) &= k \cdot u(x) \\ u(x) &= \tan(x) &\quad u'(x) &= u(x)^2 + 1 \\ u(x) &= \sqrt{x} &\quad u'(x) &= \frac2{u(x)} \\ u(x) &= \frac1{x} &\quad u'(x) &= -u(x)^2 \\ \end{aligned}

...

Log in or sign up to see more