Question 2

Cover Image for Question 2

Question 2

Consider the functions y=f(x)y = f(x) and y=g(x)y = g(x), and the regions shaded in the diagram below.

Diagram of the regions

Which of the following gives the total area of the shaded regions?

A. _44f(x)g(x)dx \displaystyle \int\_{-4}^{4} f(x) - g(x) dx

B. _44f(x)g(x)dx \displaystyle \left| \int\_{-4}^{4} f(x) - g(x) dx \right|

C. 43f(x)g(x)dx+31f(x)g(x)dx+11f(x)g(x)dx14f(x)g(x)dx\displaystyle \int^{-3}_{-4} f(x) - g(x) dx + \int^{-1}_{-3} f(x) - g(x) dx + \int^{1}_{-1} f(x) - g(x) dx \int^{4}_{1} f(x) - g(x) dx

D. 43f(x)g(x)dx+31f(x)g(x)dx11f(x)g(x)dx+14f(x)g(x)dx- \displaystyle \int^{-3}_{-4} f(x) - g(x) dx + \int^{-1}_{-3} f(x) - g(x) dx - \int^{1}_{-1} f(x) - g(x) dx + \int^{4}_{1} f(x) - g(x) dx

Solution

The region is given by the area 4_4f(x)g(x)dx \displaystyle \int^4\_{-4} \left| f(x) - g(x) \right| dx.

...

Log in or sign up to see more