Question 14(d)

Cover Image for Question 14(d)

Question 14(d)

A particle is projected from the origin, with initial speed VV at an angle of θ\theta to the horizontal. The position vector of the particle, r(t)\underset{\sim}{r}(t), where tt is the time after projection and gg is the acceleration due to gravity, is given by r(t)=(VtcosθVtsinθgt22)\underset{\sim}{r}(t) = \begin{pmatrix}Vt\cos\theta\\Vt\sin\theta-\frac{gt^2}2\end{pmatrix}

Let D(t)D(t) be the distance of the particle from the origin at time tt, so D(t)=r(t)D(t) = |\underset{\sim}{r}(t)|. Show that for θ<sin189 \displaystyle \theta < \sin^{-1}\sqrt\frac89 the distance, D(t)D(t), is increasing for all t>0t > 0.

Solution

We compute the distance of the particle at time tt by taking the magnitude of the position vector

D(t)=r(t)D(t)=(VtcosθVtsinθgt22)D(t)=(Vtcosθ)2+(Vtsinθgt22)2D(t)=V2t2cos2θ+V2t2sin2θ2(Vtsinθ)gt22+(gt22)2D(t)=V2t2gt2(Vtsinθ)+(gt22)2D(t)=V2t2gVt3sinθ+g2t44\begin{aligned} D(t) = |\underset{\sim}{r}(t)| \\ D(t) = \left|\begin{pmatrix}Vt\cos\theta\\Vt\sin\theta-\frac{gt^2}2\end{pmatrix}\right| \\ D(t) = \sqrt{\left(Vt\cos\theta\right)^2 + \left(Vt\sin\theta-\frac{gt^2}2\right)^2} \\ D(t) = \sqrt{V^2t^2\cos^2\theta + V^2t^2\sin^2\theta -2 \left(Vt\sin\theta\right)\frac{gt^2}2+\left(\frac{gt^2}2\right)^2} \\ D(t) = \sqrt{V^2t^2 - gt^2\left(Vt\sin\theta\right)+\left(\frac{gt^2}2\right)^2} \\ D(t) = \sqrt{V^2t^2 - gVt^3\sin\theta + \frac{g^2t^4}4} \\ \end{aligned}

...

Log in or sign up to see more