Question 13(d)

Cover Image for Question 13(d)

Question 13(d)

Using the substitution u=ex+2exu = e^x + 2e^{–x}, and considering u2u^2, find e3x2ex4+8e2x+e4xdx\int \frac{e^{3x} - 2e^x}{4 + 8e^{2x} + e^{4x}} dx

Solution

We note that dudx=ex2ex\frac{du}{dx} = e^x-2e^{-x} and

u2=(ex)2+2(ex)(2ex)+(2ex)2u2=e2x+4+4e2x\begin{aligned} u^2 &= \left(e^x\right)^2 + 2\left(e^x\right)\left(2e^{-x}\right) + \left(2e^{-x}\right)^2 \\ u^2 &= e^{2x} + 4 + 4e^{-2x} \end{aligned}

...

Log in or sign up to see more