Question 13(c)

Cover Image for Question 13(c)

Question 13(c)

The vector a\underset{\sim}{a} is (13) \displaystyle \begin{pmatrix} 1 \\ 3 \end{pmatrix} and the vector b\underset{\sim}{b} is (21) \displaystyle \begin{pmatrix} 2 \\ -1 \end{pmatrix}

The projection of a vector x\underset{\sim}{x} onto the vector a\underset{\sim}{a} is kak\underset{\sim}{a}, where kk is a real number.

The projection of the vector x\underset{\sim}{x} onto the vector b\underset{\sim}{b} is pbp\underset{\sim}{b}, where pp is a real number.

Find the vector x\underset{\sim}{x} in terms of kk and pp.

Solution

We recall that a vector projection can be expressed via the dot product:

Projax=(xcosθ)aaProjax=(xaa)aaProjax=(xaa2)aProjax=(xaaa)a\begin{aligned} \text{Proj}_{\underset{\sim}{a}}{\underset{\sim}{x}} &= \left(|\underset{\sim}{x}|\cos{\theta}\right)\frac{\underset{\sim}{a}}{|\underset{\sim}{a}|} \\ \text{Proj}_{\underset{\sim}{a}}{\underset{\sim}{x}} &= \left(\frac{\underset{\sim}{x}\cdot\underset{\sim}{a}}{|\underset{\sim}{a}|}\right)\frac{\underset{\sim}{a}}{|\underset{\sim}{a}|} \\ \text{Proj}_{\underset{\sim}{a}}{\underset{\sim}{x}} &= \left(\frac{\underset{\sim}{x}\cdot\underset{\sim}{a}}{|\underset{\sim}{a}|^2}\right)\underset{\sim}{a} \\ \text{Proj}_{\underset{\sim}{a}}{\underset{\sim}{x}} &= \left(\frac{\underset{\sim}{x}\cdot\underset{\sim}{a}}{\underset{\sim}{a}\cdot\underset{\sim}{a}}\right)\underset{\sim}{a} \\ \end{aligned}

...

Log in or sign up to see more