Question 13(b)

Cover Image for Question 13(b)

Question 13(b)

(i) Show that cos4x+sin4x=1+cos2(2x)2\displaystyle \cos^4{x} + \sin^4{x} = \frac{1+\cos^2{(2x)}}{2}

(ii) Hence, or otherwise, evaluate 0π4(cos4x+sin4x)dx\displaystyle \int^{\frac{\pi}{4}}_0\left(\cos^4{x} + \sin^4{x} \right) dx

Solution

For part (i):

We apply the double angle identities to show the equivalence. Recall that

cos2x=cos2xsin2x=12sin2x=2cos2x1sin2x=2sinxcosx\begin{aligned} \cos{2x} &= \cos^2{x} - \sin^2{x} \\ &= 1 - 2\sin^2{x} \\ &= 2\cos^2{x} -1 \\ \sin{2x} &= 2\sin{x}\cos{x} \end{aligned}

...

Log in or sign up to see more