Question 12(a)

Cover Image for Question 12(a)

Question 12(a)

The vectors (a22)\displaystyle \begin{pmatrix} a^2 \\ 2 \end{pmatrix} and (a+5a4)\displaystyle \begin{pmatrix} a + 5 \\ a - 4 \end{pmatrix} are perpendicular.

Find the possible values of aa.

Solution

We construct a cubic in the unknown aa by computing a dot product, which must be equal to 00 for these vectors to be perpendicular. We then solve this cubic for the possible values of aa which satisfy this equation

0=(a22)(a+5a4)0=a2(a+5)+2(a4)0=a3+5a2+2a8\begin{aligned} 0 &= \displaystyle \begin{pmatrix} a^2 \\ 2 \end{pmatrix} \cdot \begin{pmatrix} a + 5 \\ a - 4 \end{pmatrix} \\ 0 &= a^2(a+5) + 2(a - 4) \\ 0 &= a^3 + 5a^2 + 2a - 8 \\ \end{aligned}

...

Log in or sign up to see more