Question 11(a)

Cover Image for Question 11(a)

Question 11(a)

Consider the vectors a=3i+2j\underset{\sim}{a} = 3\underset{\sim}{i} + 2\underset{\sim}{j} and b=i+4j\underset{\sim}{b} = -\underset{\sim}{i} + 4\underset{\sim}{j}

i. Find 2ab2\underset{\sim}{a} - \underset{\sim}{b} .

ii. Find ab\underset{\sim}{a} \cdot \underset{\sim}{b} .

Solution

For part (i) we add the vector components individually

2ab=2(3i+2j)(i+4j)=6i+4j+i4j=(6+1)i+(44)j=7i\begin{aligned} & 2\underset{\sim}{a} - \underset{\sim}{b} \\ =& 2\left(3\underset{\sim}{i} + 2\underset{\sim}{j}\right) - \left(-\underset{\sim}{i} + 4\underset{\sim}{j}\right) \\ =& 6\underset{\sim}{i} + 4\underset{\sim}{j} +\underset{\sim}{i} - 4\underset{\sim}{j} \\ =& (6+1)\underset{\sim}{i} + (4-4)\underset{\sim}{j} \\ =& 7\underset{\sim}{i} \\ \end{aligned}

...

Log in or sign up to see more